There are many uses of titanium dioxide that we don't know about because they were made exempt from being on the package in 1977, said Faber, who added that nothing much has changed since – other than the FDA approving some other uses of the color additive, such as expanding the use of mica-based pearlescent pigments (prepared from titanium dioxide) as color additives in distilled spirits over recent years.
Despite these challenges, the TiO2 industry supplier continues to play a critical role in providing essential materials for a wide range of industries. With the growing demand for TiO2 in various applications, suppliers must continue to innovate and improve their processes to meet the needs of their customers.
Titanium dioxide comes in the form of a white powder and is sometimes used in cosmetics to adjust a color to a lighter shade. This is also why it can produce a white cast.
The Sydney Morning Herald reported on the finding of nano particles in our food supply here in Australia, despite no testing every carried out on the safety of these products by our food safety body.
Background and overview
Globally, Iron Oxide is the second largest inorganic pigment after Titanium Dioxide and the first largest color inorganic pigment. Iron oxide pigments mainly include iron oxide red, yellow, black and brown with iron oxide as the basic material. Iron oxide yellow, also known as hydroxyl iron oxide (FeOOH), will be dehydrated and decomposed into red at about 177 ℃, so the application of ordinary iron yellow pigment in high-temperature occasions such as plastic processing and baking coatings is limited. Iron oxide yellow pigment can improve its temperature resistance through surface coating, so as to expand the application field of iron oxide yellow pigment.
The chemical formula of iron oxide yellow (also known as hydroxyl iron) is α- Fe2O3 · H2O or α- FeOOH, with needle like structure and yellow powder, is a kind of particle size less than 0.1 μ m. Iron series pigment with good dispersibility in transparent medium has strong coloring power, high covering power, insoluble in alkali and slightly soluble in ACID. Synthetic iron oxide yellow has the characteristics of light resistance, good dispersion, non-toxic, tasteless and difficult to be absorbed by human body. It is widely used in coatings, plastics, ink and pharmaceutical industry.
Physical and chemical properties and structure
1. Iron oxide yellow pigment has acid and alkali resistance, resistance to general weak and dilute acids, and is very stable in alkaline solution of any concentration.
2. Iron oxide yellow pigment has certain light resistance, heat resistance and weather resistance. Its coating color is durable and can keep the coating from being damaged in light. Iron oxide yellow pigment is stable in a certain temperature range, but beyond the limit temperature, its color begins to change, and the degree of change is more significant with the increase of temperature. Iron oxide yellow pigment is not affected by cold, heat, dry and wet weather conditions.
3. Iron oxide yellow pigment is very stable in any ambient atmosphere (such as gases containing H 2S, Co, so 2, HCl, no, etc.). And resistant to pollution, water, oil and solvent penetration, insoluble in water, mineral oil or vegetable oil.
4. Iron oxide yellow pigment has strong coloring power and high hiding power. With the decrease of pigment particle size, its coloring power is stronger.
application
Nano iron oxide yellow has the characteristics of acid resistance, alkali resistance, non toxicity and low price. It is widely used in coatings, plastics and rubber. The particle size of nano iron yellow is less than 100 nm, which makes it have some unique characteristics. When light shines on its surface, transmission and diffraction will occur, showing transparent yellow, and can strongly absorb ultraviolet rays, Therefore, it can be used as a functional pigment for the surface paint of high-grade cars, precision instruments, bicycles, motorcycles, cosmetics, food, drugs and other coloring additives.
Lithopone manufacturer: Application areas
Titanium is a metal element found naturally in the environment. When it's exposed to oxygen in the air, it forms titanium oxides that are contained in many minerals, sands, soils, and dusts.
Matthew Wright, chair of the authority's working group on titanium dioxide, noted that the evidence for general toxic effects was not conclusive, but that the panel couldn't rule out genotoxicity entirely. There were also some current data limitations and the assessment could not establish a safe level for daily intake of the food additive, he stated.
Lithopone B301, Lithopone B311 powder, C.I. Pigment White 5, is a mixture of inorganic compounds, widely utilized as a white pigment. It is composed of a mixture of barium sulfate and zinc sulfide. These insoluble compounds blend well with organic compounds and confer opacity. Lithopone B301, Lithopone B311 powder is famous for the cheap production costs, greater coverage. Related white pigments include titanium dioxide, zinc oxide (zinc white), and zinc sulfide
TiO2 is also used in the production of plastics, where it serves as a whitening agent and UV stabilizer. By incorporating TiO2 into plastic products, manufacturers can enhance their appearance, increase their lifespan, and improve their resistance to sunlight and weathering. Additionally, TiO2 helps prevent the degradation of plastic materials, ensuring that they retain their properties and performance over time.
use of tio2 factory


Titanium dioxide is an inert earth mineral used as a thickening, opacifying, and sunscreen ingredient in cosmetics. It protects skin from UVA and UVB radiation and is considered non-risky in terms of of skin sensitivity. Because it is gentle, titanium dioxide is a great sunscreen active for sensitive, redness-prone skin. It’s great for use around the eyes, as it is highly unlikely to cause stinging.

china calcium carbonate vs titanium dioxide. China's calcium carbonate production is concentrated in regions such as Guangdong, Guangxi, and Jiangsu, while titanium dioxide production is centered in provinces such as Shandong, Henan, and Sichuan.
But despite all these cries of alarm, five years on from the original study no further testing into the safety of Titanium Dioxide in our food supply
